Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5

冲刺间歇训练和传统耐力训练可增加肌内净甘油三酯分解以及周脂素 2 和 5 的表达

阅读:10
作者:S O Shepherd, M Cocks, K D Tipton, A M Ranasinghe, T A Barker, J G Burniston, A J M Wagenmakers, C S Shaw

Abstract

Intramuscular triglyceride (IMTG) utilization is enhanced by endurance training (ET) and is linked to improved insulin sensitivity. This study first investigated the hypothesis that ET-induced increases in net IMTG breakdown and insulin sensitivity are related to increased expression of perilipin 2 (PLIN2) and perilipin 5 (PLIN5). Second, we hypothesized that sprint interval training (SIT) also promotes increases in IMTG utilization and insulin sensitivity. Sixteen sedentary males performed 6 weeks of either SIT (4-6, 30 s Wingate tests per session, 3 days week(-1)) or ET (40-60 min moderate-intensity cycling, 5 days week(-1)). Training increased resting IMTG content (SIT 1.7-fold, ET 2.4-fold; P < 0.05), concomitant with parallel increases in PLIN2 (SIT 2.3-fold, ET 2.8-fold; P < 0.01) and PLIN5 expression (SIT 2.2-fold, ET 3.1-fold; P < 0.01). Pre-training, 60 min cycling at ∼65% pre-training decreased IMTG content in type I fibres (SIT 17 ± 10%, ET 15 ± 12%; P < 0.05). Following training, a significantly greater breakdown of IMTG in type I fibres occurred during exercise (SIT 27 ± 13%, ET 43 ± 6%; P < 0.05), with preferential breakdown of PLIN2- and particularly PLIN5-associated lipid droplets. Training increased the Matsuda insulin sensitivity index (SIT 56 ± 15%, ET 29 ± 12%; main effect P < 0.05). No training × group interactions were observed for any variables. In conclusion, SIT and ET both increase net IMTG breakdown during exercise and increase in PLIN2 and PLIN5 protein expression. The data are consistent with the hypothesis that increases in PLIN2 and PLIN5 are related to the mechanisms that promote increased IMTG utilization during exercise and improve insulin sensitivity following 6 weeks of SIT and ET.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。