An activating and inhibitory signal from an inhibitory receptor LMIR3/CLM-1: LMIR3 augments lipopolysaccharide response through association with FcRgamma in mast cells

来自抑制性受体 LMIR3/CLM-1 的激活和抑制信号:LMIR3 通过与肥大细胞中的 FcRgamma 结合增强脂多糖反应

阅读:6
作者:Kumi Izawa, Jiro Kitaura, Yoshinori Yamanishi, Takayuki Matsuoka, Ayako Kaitani, Masahiro Sugiuchi, Mariko Takahashi, Akie Maehara, Yutaka Enomoto, Toshihiko Oki, Toshiyuki Takai, Toshio Kitamura

Abstract

Leukocyte mono-Ig-like receptor 3 (LMIR3) is an inhibitory receptor mainly expressed in myeloid cells. Coengagement of Fc epsilonRI and LMIR3 impaired cytokine production in bone marrow-derived mast cells (BMMCs) induced by Fc epsilonRI crosslinking alone. Mouse LMIR3 possesses five cytoplasmic tyrosine residues (Y241, Y276, Y289, Y303, Y325), among which Y241 and Y289 (Y241/289) or Y325 fit the consensus sequence of ITIM or immunotyrosine-based switch motif (ITSM), respectively. The inhibitory effect was abolished by the replacement of Y325 in addition to Y241/289 with phenylalanine (Y241/189/325/F) in accordance with the potential of Y241/289/325 to cooperatively recruit Src homology region 2 domain-containing phosphatase 1 (SHP)-1 or SHP-2. Intriguingly, LMIR3 crosslinking alone induced cytokine production in BMMCs expressing LMIR3 (Y241/276/289/303/325F) mutant as well as LMIR3 (Y241/289/325F). Moreover, coimmunoprecipitation experiments revealed that LMIR3 associated with ITAM-containing FcRgamma. Analysis of FcRgamma-deficient BMMCs demonstrated that both Y276/303 and FcRgamma played a critical role in the activating function of this inhibitory receptor. Importantly, LMIR3 crosslinking enhanced cytokine production of BMMCs stimulated by LPS, while suppressing production stimulated by other TLR agonists or stem cell factor. Thus, an inhibitory receptor LMIR3 has a unique property to associate with FcRgamma and thereby functions as an activating receptor in concert with TLR4 stimulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。