Morphological Alteration and Survival of Burkholderia pseudomallei in Soil Microcosms

伯克霍尔德菌在土壤微环境中的形态变化和存活

阅读:6
作者:Watcharaporn Kamjumphol, Pisit Chareonsudjai, Suwimol Taweechaisupapong, Sorujsiri Chareonsudjai

Abstract

The resilience of Burkholderia pseudomallei, the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO4 at 30°C. Iron (Fe(II)) promoted the growth of B. pseudomallei during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of B. pseudomallei in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest B. pseudomallei cells were found in soil with 100 μM FeSO4 compared with in the control soil or soil with 0.6% NaCl (P < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD(®) BacLight(™) stain combined with flow cytometry showed that B. pseudomallei remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of B. pseudomallei and its ability to change from a rod-like to coccoid form. The morphological changes of B. pseudomallei cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。