Screen-printed electrode designed with MXene/doped-polyindole and MWCNT/doped-polyindole for chronoamperometric enzymatic glucose sensor

采用 MXene/掺杂聚吲哚和 MWCNT/掺杂聚吲哚设计的丝网印刷电极,用于计时电流酶葡萄糖传感器

阅读:7
作者:Katesara Phasuksom, Nuttha Ariyasajjamongkol, Anuvat Sirivat

Abstract

The enzymatic glucose sensors as modified by MXene-dPIn and MWCNT-dPIn on a screen-printed carbon electrode (SPCE) were investigated. Herein, MXene was molybdenum carbide (Mo3C2) which has never been utilized and reported for glucose sensors. The biopolymer type to support the enzyme immobilization was examined and compared between chitosan (CHI) and κ-carrageenan (κC). MWCNT-dPIn obviously showed a larger electroactive surface area, lower charge transfer resistance and higher redox current than Mo3C2-dPIn, indicating that MWCNT-dPIn is superior to Mo3C2-dPIn. For the chitosan-based sensors, the sensitivity value of CHI-GOD/Mo3C2-dPIn is 3.53 μA mM-1 cm-2 in the linear range of 2.5-10 mM with the calculated LOD of 1.57 mM. The sensitivity value of CHI-GOD/MWCNT-dPIn is 18.85 μA mM-1 cm-2 in the linear range of 0.5-25 mM with the calculated LOD of 0.115 mM. For the κ-carrageenan based sensors, κC-GOD/MWCNT-dPIn exhibits the sensitivity of 15.80 μA mM-1 cm-2 and the widest linear range from 0.1 to 50 mM with the calculated LOD of 0.03 mM. The presently fabricated sensors exhibit excellent reproducibility, good selectivity, high stability, and disposal use. The fabricated glucose sensors are potential as practical glucose sensors as the detectable glucose ranges well cover the glucose levels found in blood, urine, and sweat for both healthy people and diabetic patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。