Purine but Not Pyrimidine De Novo Nucleotide Biosynthesis Inhibitors Strongly Enhance the Antiviral Effect of Corresponding Nucleobases Against Dengue Virus

嘌呤而非嘧啶的核苷酸从头生物合成抑制剂可显著增强相应核碱基对登革热病毒的抗病毒作用

阅读:9
作者:Laurent F Bonnac, Christine D Dreis, Madhu Rai, Robert J Geraghty

Abstract

Every year, dengue virus affects hundreds of millions of individuals worldwide. To date, there is no specific medication to treat dengue virus infections. Nucleobases, the base of a nucleoside without ribose, are understudied as potential treatments for viral infections. Antiviral nucleobases are converted in infected cells to their corresponding nucleoside triphosphate active form. Importantly, the conversion of nucleobases to their active nucleotide form and their antiviral effect can be enhanced when combined with de novo nucleotide biosynthesis inhibitors. In this work, we evaluated seven purine and pyrimidine nucleobases alone or combined with six purine or pyrimidine de novo nucleotide biosynthesis inhibitors, including novel prodrugs. Our study revealed that while a strong potentiation of purine nucleobases by purine de novo nucleotide biosynthesis inhibitors was observed, the pyrimidine nucleobases were not potentiated by pyrimidine de novo nucleotide biosynthesis inhibitors, possibly highlighting a significant difference between the modulation of purine versus pyrimidine de novo pathways and their impact on nucleobase potentiation. Most significant antiviral effects and potentiation were observed for Favipiravir, T-1105, and ribavirin nucleobases combined with purine nucleotide de novo synthesis inhibitors. These results are significant because drug combinations may solve the limited efficacy observed for some antiviral nucleobase drugs such as Favipiravir.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。