Intrafibrillar Dispersion of Cuprous Oxide (Cu2O) Nanoflowers within Cotton Cellulose Fabrics for Permanent Antibacterial, Antifungal and Antiviral Activity

氧化亚铜 (Cu2O) 纳米花在棉纤维素织物内的纤维内分散,具有永久的抗菌、抗真菌和抗病毒活性

阅读:13
作者:Matthew B Hillyer, Sunghyun Nam, Brian D Condon

Abstract

With increasingly frequent highly infectious global pandemics, the textile industry has responded by developing commercial fabric products by incorporating antibacterial metal oxide nanoparticles, particularly copper oxide in cleaning products and personal care items including antimicrobial wipes, hospital gowns and masks. Current methods use a surface adsorption method to functionalize nanomaterials to fibers. However, this results in poor durability and decreased antimicrobial activity after consecutive launderings. In this study, cuprous oxide nanoparticles with nanoflower morphology (Cu2O nanoflowers) are synthesized in situ within the cotton fiber under mild conditions and without added chemical reducing agents from a copper (II) precursor with an average maximal Feret diameter of 72.0 ± 51.8 nm and concentration of 17,489 ± 15 mg/kg. Analysis of the Cu2O NF-infused cotton fiber cross-section by transmission electron microscopy (TEM) confirmed the internal formation, and X-ray photoelectron spectroscopy (XPS) confirmed the copper (I) reduced oxidation state. An exponential correlation (R2 = 0.9979) between the UV-vis surface plasmon resonance (SPR) intensity at 320 nm of the Cu2O NFs and the concentration of copper in cotton was determined. The laundering durability of the Cu2O NF-cotton fabric was investigated, and the superior nanoparticle-leach resistance was observed, with the fabrics releasing only 19% of copper after 50 home laundering cycles. The internally immobilized Cu2O NFs within the cotton fiber exhibited continuing antibacterial activity (≥99.995%) against K. pneumoniae, E. coli and S. aureus), complete antifungal activity (100%) against A. niger and antiviral activity (≥90%) against Human coronavirus, strain 229E, even after 50 laundering cycles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。