miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase

miR-153 促进小鼠海马 HT-22 细胞系的神经分化并增加神经元特异性烯醇化酶的表达

阅读:5
作者:Chunli Xu, Chen Wang, Qiuyu Meng, Yuming Gu, Qiwei Wang, Wenjie Xu, Ying Han, Yong Qin, Jiao Li, Song Jia, Jie Xu, Yixin Zhou

Abstract

MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA‑153 (miR‑153) on the neural differentiation of HT‑22 cells. Overexpression of miR‑153 induced the differentiation of HT‑22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit‑8 assay. Furthermore, miR‑153 increased the expression of neuron‑specific γ‑enolase (NSE), neuronal nuclei (NeuN), and N‑ethylmaleimide‑sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR‑153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR‑153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ‑enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR‑153 may be a potential target for the treatment of certain neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。