Maternal obstructive sleep apnea aggravates metabolic dysfunction-associated fatty liver disease via HMGB1-TLR4 signaling-mediated endoplasmic reticulum stress in male offspring rats

母亲阻塞性睡眠呼吸暂停通过 HMGB1-TLR4 信号介导的内质网应激加重雄性子代大鼠代谢功能障碍相关的脂肪性肝病

阅读:4
作者:Ruhua Wang, Wei Feng, Yan Wang, Yonghong Jiang, Yiguang Lin, Xueqing Chen

Conclusions

These findings indicate that MOSA can exert prolonged adverse effects manifested as metabolic dysfunction in male offspring. Therefore, surveillance and management of OSA during pregnancy may be necessary to prevent and alleviate MAFLD in offspring.

Methods

The MOSA rat model of upper airway obstruction was established and fecundated. The postweaning male offspring (n = 171) from both the control group and MOSA group were randomly fed the normal chow diet (NCD, n = 89) or high-fat diet (HFD, n = 82) for the next 5 months. Liver function, lipid profile, glucose, and insulin levels were measured. Expression levels of fibrosis-related proteins and endoplasmic reticulum (ER) stress-related proteins in liver tissues were assessed using immunohistochemistry and western blotting.

Results

MOSA increased body and liver weight in male offspring, along with augmented liver organ coefficient. Serum levels of aminotransferases, low-density lipoprotein, high-density lipoprotein, triglycerides, total cholesterol, total bile acid, fasting glucose, and insulin increased significantly. MOSA exacerbated HFD-induced hepatic steatosis and fibrosis. These effects were driven by the overactivated double-stranded RNA-activated protein kinase (PKR)-like eukaryotic initiation factor 2(PERK)-activating transcription factor (ATF)4-C/EBP homologous protein (CHOP) signaling pathway-induced ER stress, and hyperacetylation and release of high mobility group box-1(HMGB1) elicited above signaling in a TLR4-dependent manner. Conclusions: These findings indicate that MOSA can exert prolonged adverse effects manifested as metabolic dysfunction in male offspring. Therefore, surveillance and management of OSA during pregnancy may be necessary to prevent and alleviate MAFLD in offspring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。