Para-nonylphenol impairs osteogenic differentiation of rat bone marrow mesenchymal stem cells by influencing the osteoblasts mineralization

对壬基酚通过影响成骨细胞矿化损害大鼠骨髓间充质干细胞的成骨分化

阅读:5
作者:Mohammad Husein Abnosi, Malek Soleimani Mehranjani, Mohammad Ali Shariatzadeh, Leila Dehdehi

Conclusion

Adverse effect of p-NP was observed on osteogenic differentiation of MSCs at 2.5 µM due to disruption of mineralization. We strongly suggest more investigations on this chemical with respect to other stem cells, especially skin stem cells as p-NP is used in the formulation of cosmetics.

Methods

MSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteogenic media as well as 0.5 or 2.5 µM of p-NP. After 5, 10, 15, and 21 days, the viability and the level of mineralization was determined using MTT assay and alizarin red, respectively. In addition, morphology and nuclear diameter of the cells were studied with the help of fluorescent dye. Furthermore, calcium content and alkalinphosphatase activity were also estimated using commercial kits. Data were statistically analyzed and the P<0.05 was taken as the level of significance.

Results

The viability and mineralization of the cells treated with 2.5 µM of p-NP reduced significantly after day 10 in comparison with the control group and administration of 0.5 µM. Moreover, chromatin condensation, reduction of nuclei diameter, and cytoplasm shrinkage was observed in the cell treated with 2.5 µM. The calcium concentration and alkalinphosphatase activity of the cells decreased significantly with 2.5 µM of p-NP when compared with 0.5 µM and control group.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。