Single molecule measurements of mechanical interactions within ternary SNARE complexes and dynamics of their disassembly: SNAP25 vs. SNAP23

三元 SNARE 复合物内机械相互作用及其拆卸动力学的单分子测量:SNAP25 与 SNAP23

阅读:5
作者:Vedrana Montana, Wei Liu, U Mohideen, Vladimir Parpura

Abstract

Regulated exocytosis is a crucial event for intercellular communication between neurons and astrocytes within the CNS. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex, composed of synaptobrevin 2, syntaxin and synaptosome-associated protein of 25 kDa or 23 kDa (SNAP25 or SNAP23), is essential in this process. It was reported that SNAP25 and SNAP23 have distinct roles in exocytotic release, where SNAP25, but not SNAP23, supports an exocytotic burst. It is not clear, however, whether this is due to the intrinsic properties of the ternary SNARE complex, containing either SNAP25 or SNAP23, or perhaps due to the differential association of these proteins with ancillary proteins to the complex. Here, using force spectroscopy, we show from single molecule investigations of the SNARE complex, that SNAP23A created a local interaction at the ionic layer by cuffing syntaxin 1A and synaptobrevin 2, similar to the action of SNAP25B; thus either of the ternary complexes would allow positioning of vesicles at a maximal distance of approximately 13 nm from the plasma membrane. However, the stability of the ternary SNARE complex containing SNAP23A is less than half of that for the complex containing SNAP25B. Thus, differences in the stability of the two different ternary complexes could underlie some of the SNAP25/23 differential ability to control the exocytotic burst.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。