Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression

根茎富集表达的高粱基因的功能分类、基因组组织、推定的顺式作用调控元件及其与数量性状基因座的关系

阅读:5
作者:Cheol Seong Jang, Terry L Kamps, D Neil Skinner, Stefan R Schulze, William K Vencill, Andrew H Paterson

Abstract

Rhizomes are organs of fundamental importance to plant competitiveness and invasiveness. We have identified genes expressed at substantially higher levels in rhizomes than other plant parts, and explored their functional categorization, genomic organization, regulatory motifs, and association with quantitative trait loci (QTLs) conferring rhizomatousness. The finding that genes with rhizome-enriched expression are distributed across a wide range of functional categories suggests some degree of specialization of individual members of many gene families in rhizomatous plants. A disproportionate share of genes with rhizome-enriched expression was implicated in secondary and hormone metabolism, and abiotic stimuli and development. A high frequency of unknown-function genes reflects our still limited knowledge of this plant organ. A putative oligosaccharyl transferase showed the highest degree of rhizome-specific expression, with several transcriptional or regulatory protein complex factors also showing high (but lesser) degrees of specificity. Inferred by the upstream sequences of their putative rice (Oryza sativa) homologs, sorghum (Sorghum bicolor) genes that were relatively highly expressed in rhizome tip tissues were enriched for cis-element motifs, including the pyrimidine box, TATCCA box, and CAREs box, implicating the gibberellins in regulation of many rhizome-specific genes. From cDNA clones showing rhizome-enriched expression, expressed sequence tags forming 455 contigs were plotted on the rice genome and aligned to QTL likelihood intervals for ratooning and rhizomatous traits in rice and sorghum. Highly expressed rhizome genes were somewhat enriched in QTL likelihood intervals for rhizomatousness or ratooning, with specific candidates including some of the most rhizome-specific genes. Some rhizomatousness and ratooning QTLs were shown to be potentially related to one another as a result of ancient duplication, suggesting long-term functional conservation of the underlying genes. Insight into genes and pathways that influence rhizome growth set the stage for genetic and/or exogenous manipulation of rhizomatousness, and for further dissection of the molecular evolution of rhizomatousness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。