Synthesis of Antifungal Agents from Xanthene and Thiazine Dyes and Analysis of Their Effects

呫吨和噻嗪类染料抗真菌剂的合成及效果分析

阅读:4
作者:Joo Ran Kim, Stephen Michielsen

Abstract

Indoor fungi growth is an increasing home health problem as our homes are more tightly sealed. One thing that limits durability of the antifungal agents is the scarcity of reactive sites on many surfaces to attach these agents. In order to increase graft yield of photosensitizers to the fabrics, poly(acrylic acid-co-styrene sulfonic acid-co-vinyl benzyl rose bengal or phloxine B) were polymerized and then grafted to electrospun fabrics. In an alternative process, azure A or toluidine blue O were grafted to poly(acrylic acid), which was subsequently grafted to nanofiber-based and microfiber-based fabrics. The fabrics grafted with photosensitizers induced antifungal effects on all seven types of fungi in the order of rose bengal > phloxine B > toluidine blue O > azure A, which follows the quantum yield production of singlet oxygen for these photoactive dyes. Their inhibition rates for inactivating fungal spores decreased in the order of P. cinnamomi, T. viride, A. niger, A. fumigatus, C. globosum, P. funiculosum, and M. grisea, which is associated with lipid composition in membrane and the morphology of fungal spores. The antifungal activity was also correlated with the surface area of fabric types which grafted the photosensitizer covalently on the surface as determined by the bound color strength.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。