Quantification of spatial subclonal interactions enhancing the invasive phenotype of pediatric glioma

量化空间亚克隆相互作用增强儿童胶质瘤的侵袭性表型

阅读:5
作者:Haider Tari, Ketty Kessler, Nick Trahearn, Benjamin Werner, Maria Vinci, Chris Jones, Andrea Sottoriva

Abstract

Diffuse midline gliomas (DMGs) are highly aggressive, incurable childhood brain tumors. They present a clinical challenge due to many factors, including heterogeneity and diffuse infiltration, complicating disease management. Recent studies have described the existence of subclonal populations that may co-operate to drive pro-tumorigenic processes such as cellular invasion. However, a precise quantification of subclonal interactions is lacking, a problem that extends to other cancers. In this study, we combine spatial computational modeling of cellular interactions during invasion with co-evolution experiments of clonally disassembled patient-derived DMG cells. We design a Bayesian inference framework to quantify spatial subclonal interactions between molecular and phenotypically distinct lineages with different patterns of invasion. We show how this approach could discriminate genuine interactions, where one clone enhanced the invasive phenotype of another, from those apparently only due to the complex dynamics of spatially restricted growth. This study provides a framework for the quantification of subclonal interactions in DMG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。