Cover crop residue decomposition triggered soil oxygen depletion and promoted nitrous oxide emissions

覆盖作物残留物的分解导致土壤氧气耗尽并促进一氧化二氮的排放

阅读:5
作者:Facundo Lussich, Jashanjeet Kaur Dhaliwal, Anthony M Faiia, Sindhu Jagadamma, Sean M Schaeffer, Debasish Saha

Abstract

Cover cropping is a promising strategy to improve soil health, but it may also trigger greenhouse gas emissions, especially nitrous oxide (N2O). Beyond nitrogen (N) availability, cover crop residue decomposition may accelerate heterotrophic respiration to limit soil O2 availability, hence promote N2O emissions from denitrification under sub-optimal water-filled pore space (WFPS) conditions that are typically not conducive to large N2O production. We conducted a 21-day incubation experiment to examine the effects of contrasting cover crop residue (grass vs legume) decomposition on soil O2 and biogeochemical changes to influence N2O and CO2 emissions from 15N labeled fertilized soils under 50% and 80% WFPS levels. Irrespective of cover crop type, mixing cover crop residue with N fertilizer resulted in high cumulative N2O emissions under both WFPS conditions. In the absence of cover crop residues, the N fertilizer effect of N2O was only realized under 80% WFPS, whereas it was comparable to the control under 50% WFPS. The N2O peaks under 50% WFPS coincided with soil O2 depletion and concomitant high CO2 emissions when cover crop residues were mixed with N fertilizer. While N fertilizer largely contributed to the total N2O emissions from the cover crop treatments, soil organic matter and/or cover crop residue derived N2O had a greater contribution under 50% than 80% WFPS. Our results underscore the importance of N2O emissions from cover crop-based fertilized systems under relatively lower WFPS via a mechanism of respiration-induced anoxia and highlight potential risks of underestimating N2O emissions under sole reliance on WFPS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。