Preferred peptide backbone conformations in the unfolded state revealed by the structure analysis of alanine-based (AXA) tripeptides in aqueous solution

通过对水溶液中丙氨酸基(AXA)三肽的结构分析揭示未折叠状态下优选的肽骨架构象

阅读:7
作者:Fatma Eker, Kai Griebenow, Xiaolin Cao, Laurence A Nafie, Reinhard Schweitzer-Stenner

Abstract

We have combined Fourier transform IR, polarized Raman spectroscopy, and vibrational CD measurements of the amide I' band profile of alanyl-X-alanine tripeptides in (2)H(2)O to obtain the dihedral angles of their central amino acid residue. X represents glycine, valine, methionine, histidine, serine, proline, lysine, leucine, tryptophan, tyrosine, and phenylalanine. The experimental data were analyzed by means of a recently developed algorithm, which exploits the excitonic coupling between the amide modes of the two peptide groups. The results were checked by measuring the respective electronic CD spectra. The investigated peptides can be sorted into three classes. Valine, phenylalanine, tryptophan, histidine, and serine predominantly adopt an extended beta-strand conformation. Cationic lysine and proline prefer a polyproline II-like structure. Alanine, methionine, glycine, and leucine populate these two conformations with comparable probability. Our results are in variance with the prediction of the random-coil model, but supportive of Flory's isolated-pair hypothesis. We combined the obtained structural propensities of the investigated residues and similar information about other residues in the literature (i.e., glutamate, aspartate, isoleucine, and glutamine) to predict possible conformations of the monomeric amyloid beta peptide A beta(1-42) in aqueous solution, which reproduces results from most recent spectroscopic studies. Thus, it is demonstrated that the unfolded state of peptides can be understood in terms of the intrinsic structural propensities of their amino acid residues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。