Approach and results
Protein degradation and protein synthesis pathways were investigated. Depletion of Poldip2 had no effect on proteasome activity, but caused a partial reduction in autophagic flux. However, the rate of collagen I degradation was increased in Poldip2(+/-) vs. Poldip2(+/+) MASMs. Conversely, activation of the PI3K/Akt/mTOR signaling pathway, involved in regulation of protein synthesis, was significantly elevated in Poldip2(+/-) MASMs as was β1-integrin expression. Suppressing mTOR signaling using Akt inhibitor or rapamycin and reducing β1-integrin expression using siRNA prevented the increase in collagen I production. While collagen I and fibronectin were increased in Poldip2(+/-) MASMs, overall protein synthesis was not different from that in Poldip2(+/)(+)MASMs, suggesting selectivity of Poldip2 for ECM proteins. Conclusions: Poldip2(+/-) MASMs exhibit higher β1-integrin expression and activity of the PI3K/Akt/mTOR signaling pathway, leading to increased ECM protein synthesis. These findings have important implications for vascular diseases in which ECM accumulation plays a role.
Conclusions
Poldip2(+/-) MASMs exhibit higher β1-integrin expression and activity of the PI3K/Akt/mTOR signaling pathway, leading to increased ECM protein synthesis. These findings have important implications for vascular diseases in which ECM accumulation plays a role.
Results
Protein degradation and protein synthesis pathways were investigated. Depletion of Poldip2 had no effect on proteasome activity, but caused a partial reduction in autophagic flux. However, the rate of collagen I degradation was increased in Poldip2(+/-) vs. Poldip2(+/+) MASMs. Conversely, activation of the PI3K/Akt/mTOR signaling pathway, involved in regulation of protein synthesis, was significantly elevated in Poldip2(+/-) MASMs as was β1-integrin expression. Suppressing mTOR signaling using Akt inhibitor or rapamycin and reducing β1-integrin expression using siRNA prevented the increase in collagen I production. While collagen I and fibronectin were increased in Poldip2(+/-) MASMs, overall protein synthesis was not different from that in Poldip2(+/)(+)MASMs, suggesting selectivity of Poldip2 for ECM proteins. Conclusions: Poldip2(+/-) MASMs exhibit higher β1-integrin expression and activity of the PI3K/Akt/mTOR signaling pathway, leading to increased ECM protein synthesis. These findings have important implications for vascular diseases in which ECM accumulation plays a role.
