Inhibition of ATR potentiates the cytotoxic effect of gemcitabine on pancreatic cancer cells through enhancement of DNA damage and abrogation of ribonucleotide reductase induction by gemcitabine

抑制 ATR 可增强吉西他滨对胰腺癌细胞的细胞毒性作用,其方式是增强 DNA 损伤并消除吉西他滨对核苷酸还原酶的诱导作用

阅读:8
作者:Shuang Liu, Yubin Ge, Tingting Wang, Holly Edwards, Qihang Ren, Yiqun Jiang, Chengshi Quan, Guan Wang

Abstract

Pancreatic cancer is a highly malignant disease with a dismal prognosis. Gemcitabine (GEM)-based chemotherapy is the first-line treatment for patients with advanced disease, although its efficacy is very limited, mainly due to drug resistance. Ataxia telangiectasia and Rad3-related (ATR) plays a critical role in the DNA damage response (DDR) which has been implicated in GEM resistance. Thus, targeting ATR represents a promising approach to enhance GEM antitumor activity. In the present study, we tested the antitumor activity of AZ20, a novel ATR-selective inhibitor, alone or combined with GEM in 5 pancreatic cancer cell lines. AZ20 treatment of the pancreatic cancer cell lines resulted in growth inhibition, with IC50 values ranging from 0.84 to 2.4 µM, but limited cell death. As expected, treatment of pancreatic cancer cell lines with AZ20 caused decreased phosphorylation of CHK1 (S-345). However, this was accompanied by DNA damage and S and G2/M cell cycle arrest, independent of TP53 gene mutational status. Importantly, combination of AZ20 with GEM resulted in synergistic inhibition of cell growth and cooperative induction of cell death in the pancreatic cancer cell lines. AZ20 significantly increased GEM-induced DNA damage and almost completely abrogated GEM-induced expression of the M2 subunit of ribonucleotide reductase. These findings suggest that inhibition of ATR is a promising strategy to enhance the antitumor activity of GEM for treating pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。