Expression of gemcitabine metabolizing enzymes and stromal components reveal complexities of preclinical pancreatic cancer models for therapeutic testing

吉西他滨代谢酶和基质成分的表达揭示了用于治疗测试的临床前胰腺癌模型的复杂性

阅读:7
作者:Lisa Knoll, Jacob Hamm, Philipp Stroebel, Todorovic Jovan, Robert Goetze, Shiv Singh, Elisabeth Hessmann, Volker Ellenrieder, Christoph Ammer-Herrmenau, Albrecht Neesse

Aim

To investigate the association of the tumor microenvironment (TME) composition and gemcitabine metabolizing enzyme (GME) expression in vitro and several in vivo models.

Background

Pancreatic ductal adenocarcinoma (PDAC) poorly responds to antineoplastic agents. Discrepancies between preclinical success and clinical failure of compounds has been a continuous challenge and major obstacle in PDAC research.

Conclusions

Our findings suggest that the expression of GME is independent from the deposition of stromal components. KPC mice are most appropriate to study stromal composition whereas PDX mice maintain GME expression of the corresponding hPRT and could be best suited for pharmacokinetic studies.

Methods

mRNA expression and protein levels of GME (cytosolic 5'-nucleotidase 1 A; NT5C1A, cytidine deaminase; CDA, deoxycytidine kinase; DCK), gemcitabine transporters (ENT1, ENT2, RRM1, RRM2) and stromal components (hyaluroninc acid, podoplanin, masson trichrome, picrosirius) were assessed by qRT-PCR and immunohistochemistry in murine LSL-KrasG12D/+;LSL-Trp53R172 H/+; Pdx-1-Cre (KPC), orthotopically transplanted mice (OTM), human primary resected PDAC tissue (hPRT), corresponding patient-derived xenograft (PDX) mice, and KPC-SPARC-/- mice. mRNA expression of GME was analyzed in PDAC cell lines (Panc-1, MIA PaCa, BXPC3 and L3.6) upon incubation on collagen or pancreatic stellate cell (PSC) conditioned media by qRT-PCR.

Results

Endogenous KPC tumors exhibited significantly higher levels of GME compared to OTM. However, GME levels did not differ between hPRT and corresponding PDX mice. Using Kendalls Tau correlation coefficient we did not show a significant correlation of GME and components of the TME except for NT5C1A and hyaluronic acid in PDX mice (p=0.029). GME were not significantly altered upon SPARC depletion in vivo, and upon treatment with PSC-conditioned media or incubation on collagen plated dishes in vitro. Conclusions: Our findings suggest that the expression of GME is independent from the deposition of stromal components. KPC mice are most appropriate to study stromal composition whereas PDX mice maintain GME expression of the corresponding hPRT and could be best suited for pharmacokinetic studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。