Microbiome Structure and Function in Woodchip Bioreactors for Nitrate Removal in Agricultural Drainage Water

用于农业排水硝酸盐去除的木片生物反应器中的微生物组结构和功能

阅读:5
作者:Arnaud Jéglot, Joachim Audet, Sebastian Reinhold Sørensen, Kirk Schnorr, Finn Plauborg, Lars Elsgaard

Abstract

Woodchip bioreactors are increasingly used to remove nitrate (NO3 -) from agricultural drainage water in order to protect aquatic ecosystems from excess nitrogen. Nitrate removal in woodchip bioreactors is based on microbial processes, but the microbiomes and their role in bioreactor efficiency are generally poorly characterized. Using metagenomic analyses, we characterized the microbiomes from 3 full-scale bioreactors in Denmark, which had been operating for 4-7 years. The microbiomes were dominated by Proteobacteria and especially the genus Pseudomonas, which is consistent with heterotrophic denitrification as the main pathway of NO3 - reduction. This was supported by functional gene analyses, showing the presence of the full suite of denitrification genes from NO3 - reductases to nitrous oxide reductases. Genes encoding for dissimilatory NO3 - reduction to ammonium were found only in minor proportions. In addition to NO3 - reducers, the bioreactors harbored distinct functional groups, such as lignocellulose degrading fungi and bacteria, dissimilatory sulfate reducers and methanogens. Further, all bioreactors harbored genera of heterotrophic iron reducers and anaerobic iron oxidizers (Acidovorax) indicating a potential for iron-mediated denitrification. Ecological indices of species diversity showed high similarity between the bioreactors and between the different positions along the flow path, indicating that the woodchip resource niche was important in shaping the microbiome. This trait may be favorable for the development of common microbiological strategies to increase the NO3 - removal from agricultural drainage water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。