CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer

肿瘤微环境中的 CCL17 和 CCL22 趋化因子与胃癌中 Foxp3+ 调节性 T 细胞的积累有关

阅读:6
作者:Yoshiki Mizukami, Koji Kono, Yoshihiko Kawaguchi, Hidenori Akaike, Kazuyasu Kamimura, Hidemitsu Sugai, Hideki Fujii

Abstract

It has been reported that an increased population of regulatory T cells (Tregs) is one of the reasons for impaired anti-tumor immunity. Recently, Foxp3 has been reported as a reliable marker of Tregs. The authors investigated the frequency of Foxp3(+) Tregs within CD4(+) cells in TILs, regional lymph nodes and PBLs of gastric cancer patients (n = 45). Furthermore, to elucidate the mechanisms behind Treg accumulation within tumors, they evaluated the relationship between CCL17 or CCL22 expression and the frequency of Foxp3(+) Tregs in gastric cancer. CD4(+)CD25(+)Foxp3(+) Tregs as a percentage of CD4(+) cells were counted by flow cytometry and evaluated by immunohistochemistry. Moreover, an in vitro migration assay using Tregs derived from gastric cancers was performed in the presence of CCL17 or CCL22. As a result, the frequency of Foxp3(+) Tregs in TILs was significantly higher than that in normal gastric mucosa (12.4% +/- 7.5% vs. 4.1% +/- 5.3%, p < 0.01). Importantly, the increase in Tregs in TILs occurred to the same extent in early and advanced disease. Furthermore, the frequency of CCL17(+) or CCL22(+) cells among CD14(+) cells within tumors was significantly higher than that of normal gastric mucosa, and there was a significant correlation between the frequency of CCL17(+) or CCL22(+) cells and Foxp3(+) Tregs in TILs. In addition, the in vitro migration assay indicated that Tregs were significantly induced to migrate by CCL17 or CCL22. In conclusion, CCL17 and CCL22 within the tumor are related to the increased population of Foxp3(+) Tregs, with such an observation occurring in early gastric cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。