Down regulation of Kv3.4 channels by chronic hypoxia increases acute oxygen sensitivity in rabbit carotid body

慢性缺氧引起 Kv3.4 通道下调,增加兔颈动脉体的急性氧敏感性

阅读:5
作者:Stefan Kääb, Eduardo Miguel-Velado, José Ramón López-López, M Teresa Pérez-García

Abstract

The carotid body (CB) chemoreceptors participate in the ventilatory responses to acute and chronic hypoxia (CH). Arterial hypoxaemia increases breathing within seconds, and CB chemoreceptors are the principal contributors to this reflex hyperventilatory response. Acute hypoxia induces depolarization of CB chemoreceptors by inhibiting certain K+ channels, but the role of these channels in CH, as in high-altitude acclimatization, is less known. Here we explored the effects of prolonged (24-48 h) hypoxic exposure of rabbit CB chemoreceptor cells in primary cultures on the voltage-dependent K+ currents and on their response to acute hypoxia. We found that CH induces a decrease in the amplitude of outward K+ currents due to a reduction in a fast-inactivating BDS- and highly TEA-sensitive component of the current. In spite of this effect, acute hypoxic inhibition of K+ currents is increased in CH cultures, as well as hypoxia-induced depolarization. These data suggest that downregulation of this component (that does not contribute to the oxygen-sensitive K+ current (IKO2) participates in the hypoxic sensitization. Pharmacological, immunocytochemical and quantitative PCR (qPCR) experiments demonstrate that CH-induced decrease in outward K+ currents is due to a downregulation of the expression of Kv3.4 channels. Taken together, our results suggest that CH sensitization in rabbit CB could be achieved by an increase in the relative contribution of IKO2 to the outward K+ current as a consequence of the decreased expression of the oxygen-insensitive component of the current. We conclude that acute and chronic hypoxia can exert their effects acting on different molecular targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。