The Arabidopsis Pleiotropic Drug Resistance Transporters PEN3 and PDR12 Mediate Camalexin Secretion for Resistance to Botrytis cinerea

拟南芥多效性抗药性转运蛋白 PEN3 和 PDR12 介导 Camalexin 分泌以抵抗灰葡萄孢菌

阅读:5
作者:Yunxia He, Juan Xu, Xiaoyang Wang, Xiaomeng He, Yangxiayu Wang, Jinggeng Zhou, Shuqun Zhang, Xiangzong Meng

Abstract

Plant defense often depends on the synthesis and targeted delivery of antimicrobial metabolites at pathogen contact sites. The pleiotropic drug resistance (PDR) transporter PENETRATION3 (PEN3)/PDR8 in Arabidopsis (Arabidopsis thaliana) has been implicated in resistance to a variety of fungal pathogens. However, the antimicrobial metabolite(s) transported by PEN3 for extracellular defense remains unidentified. Here, we report that PEN3 functions redundantly with another PDR transporter (PDR12) to mediate the secretion of camalexin, the major phytoalexin in Arabidopsis. Consistent with this, the pen3 pdr12 double mutants exhibit dramatically enhanced susceptibility to the necrotrophic fungus Botrytis cinerea as well as severe hypersensitivity to exogenous camalexin. PEN3 and PDR12 are transcriptionally activated upon B. cinerea infection, and their expression is regulated by the mitogen-activated protein kinase 3 (MPK3) and MPK6, and their downstream WRKY33 transcription factor. Further genetic analysis indicated that PEN3 and PDR12 contribute to B. cinerea resistance through exporting not only camalexin but also other unidentified metabolite(s) derived from Trp metabolism, suggesting that PEN3 and PDR12 have multiple functions in Arabidopsis immunity via transport of distinct Trp metabolic products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。