Up-regulation of GSTT1 in serous ovarian cancer associated with resistance to TAXOL / carboplatin

浆液性卵巢癌中 GSTT1 的上调与 TAXOL/卡铂耐药性相关

阅读:5
作者:Jing Zhang #, Suhong Xie #, Lei Zhou, Xiaoyu Tang, Xiaolin Guan, Minjie Deng, Hui Zheng, Yanchun Wang, Renquan Lu, Lin Guo

Abstract

Serous ovarian cancer (SOC) is the most common women cancer and the leading cause of cancer-related mortality among the gynaecological malignancies. Although effective chemotherapeutics combined with surgery are developed for the treatment, the five-year survival rate is unsatisfactory due to chemoresistance. To overcome this shortcoming of chemotherapy, we established taxol and carboplatin resistant SOC cell lines for the understandings of the molecular and cellular mechanisms of chemoresistance. Here, we found that these chemoresistant cell lines showed less viability and proliferation, due to more cells arrested at G0/G1 phase. Glutathione-S-transferases-theta1 (GSTT1) was significantly upregulated in these chemoresistant cells, along with other chemoresistant genes. Meanwhile, GSTT1 expression was also significantly upregulated in the SOC patient tissues after taxol treatment, indicating this upregulation was physiologically relevant to chemotherapy. Further, suppression of GSTT1 expression by shRNA in SOC cell lines led to more sensitivity to drug treatment, through increasing divided cells and promoting cell death. Moreover, the expression of DNA topoisomerase 1 (Topo I) was in synergy with that of GSTT1 in the chemoresistant cells, and GSTT1 can bind to Topo I in vitro, which suggested GSTT1 could function through DNA repair mechanism during chemoresistance. In summary, our data imply that GSTT1 may be a potential biomarker or indicator of drug resistance in serous ovarian cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。