Characterization and application of single fluorescent nanodiamonds as cellular biomarkers

单个荧光纳米金刚石作为细胞生物标志物的表征和应用

阅读:6
作者:Chi-Cheng Fu, Hsu-Yang Lee, Kowa Chen, Tsong-Shin Lim, Hsiao-Yun Wu, Po-Keng Lin, Pei-Kuen Wei, Pei-Hsi Tsao, Huan-Cheng Chang, Wunshain Fann

Abstract

Type Ib diamonds emit bright fluorescence at 550-800 nm from nitrogen-vacancy point defects, (N-V)(0) and (N-V)(-), produced by high-energy ion beam irradiation and subsequent thermal annealing. The emission, together with noncytotoxicity and easiness of surface functionalization, makes nano-sized diamonds a promising fluorescent probe for single-particle tracking in heterogeneous environments. We present the result of our characterization and application of single fluorescent nanodiamonds as cellular biomarkers. We found that, under the same excitation conditions, the fluorescence of a single 35-nm diamond is significantly brighter than that of a single dye molecule such as Alexa Fluor 546. The latter photobleached in the range of 10 s at a laser power density of 10(4) W/cm(2), whereas the nanodiamond particle showed no sign of photobleaching even after 5 min of continuous excitation. Furthermore, no fluorescence blinking was detected within a time resolution of 1 ms. The photophysical properties of the particles do not deteriorate even after surface functionalization with carboxyl groups, which form covalent bonding with polyL-lysines that interact with DNA molecules through electrostatic forces. The feasibility of using surface-functionalized fluorescent nanodiamonds as single-particle biomarkers is demonstrated with both fixed and live HeLa cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。