A 5-Hydroxymethylcytosine-Based Noninvasive Model for Early Detection of Colorectal Carcinomas and Advanced Adenomas: The METHOD-2 Study

基于 5-羟甲基胞嘧啶的早期检测结直肠癌和晚期腺瘤的非侵入性模型:METHOD-2 研究

阅读:5
作者:Wenju Chang #, Zhou Zhang #, Baoqing Jia #, Kefeng Ding #, Zhizhong Pan #, Guoqiang Su #, Wei Zhang #, Tianyu Liu, Yunshi Zhong, Guodong He, Li Ren, Ye Wei, Dongdong Li, Xiaolong Cui, Jun Yang, Yixiang Shi, Marc Bissonnette, Chuan He, Wei Zhang, Jia Fan, Jianmin Xu

Conclusions

Genome-wide mapping of 5hmC in cfDNA shows promise as a highly sensitive and specific noninvasive blood test to be integrated into screening programs for improving early detection of colorectal carcinoma and high-risk AA.

Purpose

Detection of colorectal carcinomas at a time when there are more treatment options is associated with better outcomes. This prospective case-control study assessed the 5-hydroxymethylcytosine (5hmC) biomarkers in circulating cell-free DNA (cfDNA) for early detection of colorectal carcinoma and advanced adenomas (AA). Experimental design: Plasma cfDNA samples from 2,576 study participants from the multicenter METHOD-2 study (NCT03676075) were collected, comprising patients with newly diagnosed colorectal carcinoma (n = 1,074), AA (n = 356), other solid tumors (n = 80), and non-colorectal carcinoma/AA controls (n = 1,066), followed by genome-wide 5hmC profiling using the 5hmC-Seal technique and the next-generation sequencing. A weighted diagnostic model for colorectal carcinoma (stage I-III) and AA was developed using the elastic net regularization in a discovery set and validated in independent samples.

Results

Distribution of 5hmC in cfDNA reflected gene regulatory relevance and tissue of origin. Besides being confirmed in internal validation, a 96-gene model achieved an area under the curve (AUC) of 90.7% for distinguishing stage I-III colorectal carcinoma from controls in 321 samples from multiple centers for external validation, regardless of primary location or mutation status. This model also showed cancer-type specificity as well as high capacity for distinguishing AA from controls with an AUC of 78.6%. Functionally, differential 5hmC features associated with colorectal carcinoma and AA demonstrated relevance to colorectal carcinoma biology, including pathways such as calcium and MAPK signaling. Conclusions: Genome-wide mapping of 5hmC in cfDNA shows promise as a highly sensitive and specific noninvasive blood test to be integrated into screening programs for improving early detection of colorectal carcinoma and high-risk AA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。