Machine learning algorithm predicts fibrosis-related blood diagnosis markers of intervertebral disc degeneration

机器学习算法预测椎间盘退变的纤维化相关血液诊断标志物

阅读:5
作者:Wei Zhao #, Jinzheng Wei #, Xinghua Ji #, Erlong Jia, Jinhu Li, Jianzhong Huo

Background

Intervertebral disc cell fibrosis has been established as a contributing factor to intervertebral disc degeneration (IDD). This study aimed to identify fibrosis-related diagnostic genes for patients with IDD.

Conclusion

This study identified two diagnostic genes associated with fibrosis in patients with IDD. Additionally, we elucidated their potential regulatory networks and identified target drugs, which offer a theoretical basis and reference for further study into fibrosis-related genes involved in IDD.

Methods

RNA-sequencing data was downloaded from Gene Expression Omnibus (GEO) database. The diagnostic genes was identified using Random forest based on the differentially expressed fibrosis-related genes (DE-FIGs) between IDD and control samples. The immune infiltration states in IDD and the regulatory network as well as potential drugs targeted diagnostic genes were investigated. Quantitative Real-Time PCR was conducted for gene expression valifation.

Results

CEP120 and SPDL1 merged as diagnostic genes. Substantial variations were observed in the proportions of natural killer cells, neutrophils, and myeloid-derived suppressor cells between IDD and control samples. Further experiments indicated that AC144548.1 could regulate the expressions of SPDL1 and CEP120 by combininghsa-miR-5195-3p and hsa-miR-455-3p, respectively. Additionally, transcription factors FOXM1, PPARG, and ATF3 were identified as regulators of SPDL1 and CEP120 transcription. Notably, 56 drugs were predicted to target these genes. The down-regulation of SPDL1 and CEP120 was also validated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。