On the optimized energy transport rate of magnetized micropolar fluid via ternary hybrid ferro-nanosolids: A numerical report

关于磁化微极流体通过三元混合铁纳米固体的优化能量传输速率:数值报告

阅读:5
作者:Mohammed Z Swalmeh, Firas A Alwawi, A A Altawallbeh, Kohilavani Naganthran, Ishak Hashim

Abstract

In the current era, a chemical, industrial, or production process may not be devoid of heat transfer processes through fluids. This is seen in evaporators, distillation units, dryers, reactors, refrigeration and air conditioning systems, and others. On the other hand, the micropolar model effectively simulates microstructured fluids like animal blood, polymeric suspensions, and crystal fluid, paving the way for new potential applications based mainly on complex fluids. This investigation attempts to figure out and predict the thermal behavior of a polar fluid in motion across a solid sphere while considering the Lorentz force and mixed convection. To support the original fluid's thermophysical characteristics, two types of ternary hybrid ferro-nanomaterials are used. The problem is modelled using a single-phase model. Then, using the Keller box approximation, a numerical finding is obtained. The study reveals that Increasing the volume fraction of the ternary hybrid nonsolid results in optimized values of Nusselt number, velocity, and temperature. The presence of Lorentz forces effectively mitigates flow strength, skin friction, and energy transfer rate. The mixed convection factor contributes significantly to enhanced energy transfer and improved flow scenarios. For maximum heat transfer efficiency, employing Fe3O4-Cu-SiO2 is recommended over Fe3O4-Al2O3-TiO2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。