mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat

mRNA 和小 RNA 转录组揭示新生六倍体小麦异源多倍体杂种优势的动态同源物调控

阅读:7
作者:Aili Li, Dengcai Liu, Jun Wu, Xubo Zhao, Ming Hao, Shuaifeng Geng, Jun Yan, Xiaoxue Jiang, Lianquan Zhang, Junyan Wu, Lingjie Yin, Rongzhi Zhang, Liang Wu, Youliang Zheng, Long Mao

Abstract

Nascent allohexaploid wheat may represent the initial genetic state of common wheat (Triticum aestivum), which arose as a hybrid between Triticum turgidum (AABB) and Aegilops tauschii (DD) and by chromosome doubling and outcompeted its parents in growth vigor and adaptability. To better understand the molecular basis for this success, we performed mRNA and small RNA transcriptome analyses in nascent allohexaploid wheat and its following generations, their progenitors, and the natural allohexaploid cultivar Chinese Spring, with the assistance of recently published A and D genome sequences. We found that nonadditively expressed protein-coding genes were rare but relevant to growth vigor. Moreover, a high proportion of protein-coding genes exhibited parental expression level dominance, with genes for which the total homoeolog expression level in the progeny was similar to that in T. turgidum potentially participating in development and those with similar expression to that in Ae. tauschii involved in adaptation. In addition, a high proportion of microRNAs showed nonadditive expression upon polyploidization, potentially leading to differential expression of important target genes. Furthermore, increased small interfering RNA density was observed for transposable element-associated D homoeologs in the allohexaploid progeny, which may account for biased repression of D homoeologs. Together, our data provide insights into small RNA-mediated dynamic homoeolog regulation mechanisms that may contribute to heterosis in nascent hexaploid wheat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。