Near-infrared spectroscopy combined with fuzzy fast pseudoinverse linear discriminant analysis to discriminate mee tea grades

近红外光谱结合模糊快速伪逆线性判别分析鉴别米茶等级

阅读:7
作者:Bin Wu, Wenbo Tang, Jin Zhou, Hongwen Jia, Hualei Shen, Zuxuan Qi

Abstract

Mee tea, one of the major types of green tea in China, is often used for export because of its elegant appearance, high fragrance and strong taste. However, the quality of tea differs greatly due to the difference in raw material selection and production technology level. In order to accurately and quickly differentiate different grades of Mee tea, fuzzy fast pseudoinverse linear discriminant analysis (FFPLDA) was proposed based on fast pseudoinverse linear discriminant analysis (FPLDA) for extracting discriminant information from near-infrared (NIR) spectra. Firstly, NIR spectra of Mee tea samples were acquired, and then they were preprocessed by multiplicative scatter correlation (MSC). Secondly, the compression of data was achieved by principal component analysis (PCA). Thirdly, linear discriminant analysis (LDA), FPLDA, FFPLDA and fuzzy Foley-Sammon transformation (FFST) were respectively performed to retrieve discriminant information from NIR data. Finally, the K-nearest neighbor (KNN) was utilized to classify Mee tea grades. In this study, experimental results showed that the accuracy of FFPLDA was higher than that of LDA, FFST and FPLDA. Therefore, NIR spectroscopy coupled with FFPLDA and KNN has a good effect in discrimination of Mee tea grades and also a great application potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。