Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V-ATPase

鱼类孤立水平细胞的去极化通过激活 V-ATPase 使其周围环境酸化

阅读:9
作者:Hiroshi Jouhou, Kazunori Yamamoto, Akinori Homma, Masayuki Hara, Akimichi Kaneko, Masahiro Yamada

Abstract

In order to interpret the formation of receptive field surrounds in retinal neurons, a proton-mediated mechanism was proposed to mediate feedback from horizontal cells (HCs) to cone photoreceptors. To verify the idea that depolarized HCs release protons, we measured, by a fluorescence ratiometric technique, the pH of the immediate external surface (pHs) of HCs isolated from the carp or goldfish retina. When HCs stained by 5-hexadecanoylaminofluorescein, a pH-sensitive lipophilicdye, were depolarized by bath-application of kainate or high-K+ medium, pHs was lowered. The amount of pHs change was monotonically dependent on the degree of depolarization, as much as 0.21 +/- 0.05 pH units by 100 mV depolarization (induced by 100 mm K+). Acidification was suppressed by 400 nm bafilomycin A1, a specific inhibitor of the vacuolar type H+ pump (V-ATPase), suggesting that depolarization released protons from HCs via the voltage-sensitive H+ pump. Immunocytochemical analysis, using an anti-V-ATPase antibody, revealed the existence of V-ATPase in dissociated HCs. These results support the hypothesis that the feedback from HCs to cones could be proton mediated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。