Synergetic biofuel production from co-pyrolysis of food and plastic waste: reaction kinetics and product behavior

食品和塑料废物共热解协同生产生物燃料:反应动力学和产物行为

阅读:5
作者:Apip Amrullah, Obie Farobie, Shofwatunnida Septarini, Justinus A Satrio

Abstract

This study aimed to develop a process for producing bio-oil, char, and value-added chemicals from food waste and plastic waste blend using co-pyrolysis under controlled conditions. The food waste (rice, vegetables, and fish) was blended in definite ratios (70:30, 60:40, and 50:50 w/w) with polyethylene terephthalate (PET). Experiments were conducted at various temperatures (250, 300, and 350 °C) and reaction times (30, 60, 90, and 120 min). A kinetic analysis was performed to fit experimental data, and reaction kinetics were observed to follow Arrhenius behavior. Maximum yields of bio-oil and bio-char, 66 and 40 wt% respectively, were attained at 350 °C, with yields being strongly influenced by variations in temperature and weakly affected by variations in reaction time. Co-pyrolysis promoted the formation of carboxylic acid, hydrocarbons, and furan derivatives. Formation of carboxylic acid could be increased by increasing the ratio of plastic waste. A maximum carboxylic acid content of 42.01% was achieved at 50% of plastic waste. Meanwhile, a maximum aliphatic hydrocarbon content of 44.6% was obtained with a ratio of 70:30 of food waste to plastic waste at 350 °C. Overall, pyrolysis of food and plastic waste produced value-added compounds that can be used as biofuels and for a variety of other applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。