PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels

PIP2 水解是激动剂诱导抑制的基础,并调节双孔域 K+ 通道的电压门控

阅读:8
作者:Coeli M B Lopes, Tibor Rohács, Gábor Czirják, Tamás Balla, Péter Enyedi, Diomedes E Logothetis

Abstract

Two-pore (2-P) domain potassium channels are implicated in the control of the resting membrane potential, hormonal secretion, and the amplitude, frequency and duration of the action potential. These channels are strongly regulated by hormones and neurotransmitters. Little is known, however, about the mechanism underlying their regulation. Here we show that phosphatidylinositol 4,5-bisphosphate (PIP2) gating underlies several aspects of 2-P channel regulation. Our results demonstrate that all four 2-P channels tested, TASK1, TASK3, TREK1 and TRAAK are activated by PIP2. We show that mechanical stimulation may promote PIP2 activation of TRAAK channels. For TREK1, TASK1 and TASK3 channels, PIP2 hydrolysis underlies inhibition by several agonists. The kinetics of inhibition by the PIP2 scavenger polylysine, and the inhibition by the phosphatidylinositol 4-kinase inhibitor wortmannin correlated with the level of agonist-induced inhibition. This finding suggests that the strength of channel PIP2 interactions determines the extent of PLC-induced inhibition. Finally, we show that PIP2 hydrolysis modulates voltage dependence of TREK1 channels and the unrelated voltage-dependent KCNQ1 channels. Our results suggest that PIP2 is a common gating molecule for K+ channel families despite their distinct structures and physiological properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。