Non-RBD peptides of SARS-CoV-2 spike protein exhibit immunodominance as they elicit both innate and adaptive immune responses

SARS-CoV-2刺突蛋白的非RBD肽段具有免疫优势,因为它们能够诱导先天性和适应性免疫反应。

阅读:2
作者:Deepika Rathore ,Preeti Chauhan ,Anvesh Bonagiri ,Lekha Gandhi ,Deepti Maisnam ,Ramesh Kumar ,Anupama T Row ,M M Kesavulu ,Musturi Venkataramana

Abstract

Severe acute respiratory coronavirus-2 (SARS-CoV-2) emerged in 2019 as a new virus and caused worldwide outbreaks, quickly turning into a pandemic disease called coronavirus disease-19 (COVID-19). All the existing methodologies were used for developing vaccines for this virus. But sporadic infections of this virus and the emergence of new strains to date suggest the incomplete protection offered by the developed vaccines and the need for new research. In this direction, we identified five epitopes present in the non-RBD region and on the surface of the spike protein by in silico analysis. They are epitope I (aa 80-90), epitope II (aa 262-270), and a small protein with three epitopes (aa 1059-1124). Antigenicity scores of these epitopes were found to be higher than the full length spike protein and its RBD region. These epitopes showed high conserveness across the emerging strains, high immunogenicity, non-toxicity, no homology with human sequences and high affinity for MHC class I & II molecules. Antibodies raised against these epitopes interacted with the bacterially expressed spike protein in western blotting. The antiserum of COVID-19 recovered participants reacted with the developed epitopes (small protein). Furthermore, in the presence of the respective antiserum and COVID-19 convalescent serum, these epitopes successfully fixed the complement, implying a possible role in innate immunity. The epitopes were also found to activate the peripheral blood mononuclear cells (PBMCs) isolated from the blood samples of COVID-19 recovered/vaccinated participants, suggesting a possible role in adaptive immunity. The need for the new SARS-CoV-2 vaccines is further highlighted in light of current reports about the side effects of a developed vaccine (AstraZeneca) and the circulating new strains. The epitopes presented in this study represent the potential immunogens and expect certain pitfalls of the existing vaccines would be sealed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。