The Interaction between DELLA and ARF/IAA Mediates Crosstalk between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato

DELLA 与 ARF/IAA 相互作用介导赤霉素和生长素信号之间的串扰以控制番茄果实的形成

阅读:6
作者:Jianhong Hu, Alon Israeli, Naomi Ori, Tai-Ping Sun

Abstract

Fruit initiation following fertilization in angiosperms is strictly regulated by phytohormones. In tomato (Solanum lycopersicum), auxin and gibberellin (GA) play central roles in promoting fruit initiation. Without fertilization, elevated GA or auxin signaling can induce parthenocarpy (seedless fruit production). The GA-signaling repressor SlDELLA and auxin-signaling components SlIAA9 and SlARF7 repress parthenocarpy, but the underlying mechanism is unknown. Here, we show that SlDELLA and the SlARF7/SlIAA9 complex mediate crosstalk between GA and auxin pathways to regulate fruit initiation. Yeast-two-hybrid and coimmunoprecipitation assays showed that SlARF7 and additional activator SlARFs interact with SlDELLA and SlIAA9 through distinct domains. SlARF7/SlIAA9 and SlDELLA antagonistically modulate the expression of feedback-regulated genes involved in GA and auxin metabolism, whereas SlARF7/SlIAA9 and SlDELLA coregulate the expression of fruit growth-related genes. Analysis of procera (della), SlARF7 RNAi (with downregulated expression of multiple activator SlARFs), and entire (iaa9) single and double mutants indicated that these genes additively affect parthenocarpy, supporting the notion that the SlARFs/SlIAA9 and SlDELLA interaction plays an important role in regulating fruit initiation. Analysis of the GA-deficient mutant gib1 showed that active GA biosynthesis and signaling are required for auxin-induced fruit initiation. Our study reveals how direct crosstalk between auxin- and GA-signaling components is critical for tomato fruit initiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。