Insights into environmental caffeine contamination in ecotoxicological biomarkers and potential health effects of Danio rerio

深入了解生态毒理生物标志物中的环境咖啡因污染以及斑马鱼的潜在健康影响

阅读:7
作者:Bárbara S Diogo, Sara C Antunes, Ivo Pinto, João Amorim, Cláudia Teixeira, Luís Oliva Teles, Oksana Golovko, Vladimír Žlábek, António Paulo Carvalho, Sara Rodrigues

Abstract

Caffeine (CAF) exposures have been shown to cause several pharmacological and biological effects in target and non-target organisms. Although there are already several ecotoxicological studies with CAF in non-target organisms, they are focused on marine organisms, with relevant concentrations in these ecosystems, therefore, less ecologically relevant to freshwater ecosystems (the main ecoreceptor of this type of anthropogenic contaminant). The present study aimed to assess the chronic effects (28 days) of sub-lethal and environmentally relevant concentrations of CAF (0.16, 0.42, 1.09, 2.84, 7.40, 19.23, and 50 μg/L) in Danio rerio. Biochemical endpoints as biomarkers of antioxidant defense, biotransformation, lipid peroxidation, energy sources, and neurotransmission were assessed. CAF exposure induced alterations in antioxidant defenses (superoxide dismutase and glutathione reductase activities, and glutathione content) preventing lipid peroxidation. Lactate dehydrogenase activity decreased in all the concentrations tested, while acetylcholinesterase activity was only affected by the highest concentrations tested (19.23 and 50 μg/L). We also utilized a multi-biomarker approach (Integrated Biomarker Response version 2, IBRv2) to investigate the effects of CAF in the dispersion scope of individual biochemical responses of D. rerio. IBRv2 showed that the concentration of 50 μg/L promotes the highest stress. However, the results showed that CAF induced disturbances in the metabolic pathways studied in D. rerio. These results demonstrated the toxic effects of CAF on freshwater fish, compromising their physiological functions and evidencing the need for monitoring the residues of CAF released into the inland aquatic environments. Furthermore, this research evidence that phylogenetically and physiologically different species may present different biological responses with concern for ecologically relevant environmental conditions. In this sense, the present study generated ecotoxicologically relevant data, that can be considered by environment regulators, since the here-endpoints evaluated showed sensitivity and consistency in the evaluation of caffeine risks in freshwater environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。