Development of experimental error-Driven model for prediction of corrosion rates of amines based on their chemical structures

基于胺的化学结构预测胺腐蚀速率的实验误差驱动模型的开发

阅读:5
作者:Jessica Narku-Tetteh, Ebenezer Mensah, Pailin Muchan, Teeradet Supap, Supranee Lisawadi, Raphael Idem

Abstract

This work investigated the relationships between amine corrosion rates and their chemical structural properties for application in the development of a Gaussian Process Regression (GPR) model for chemical structure-based prediction of corrosion rate of any amine. The GPR model accounted for experimental errors, which widened its scope to accurately predict the true corrosion rates, being restricted only to error associated with the trained model. The Average Absolute Deviation (AAD) between experimental corrosion rates and model predicted rates was 4.26 % for the test data, and 5.32 % for two test data unknown to the model. This showed that the model is generalizable and its predictions are accurate. This work also developed a user-friendly Graphical-User Interface, which allows a user to define any amine's structure to provide needed information to calculate its surface tension and steric effects for use as input variables to the model in predicting the corrosion rate of the amine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。