Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava

表达木薯 CYP79D2 的拟南芥中缬氨酸和异亮氨酸衍生的硫代葡萄糖苷的代谢工程

阅读:8
作者:Michael Dalgaard Mikkelsen, Barbara Ann Halkier

Abstract

Glucosinolates are amino acid-derived natural products that, upon hydrolysis, typically release isothiocyanates with a wide range of biological activities. Glucosinolates play a role in plant defense as attractants and deterrents against herbivores and pathogens. A key step in glucosinolate biosynthesis is the conversion of amino acids to the corresponding aldoximes, which is catalyzed by cytochromes P450 belonging to the CYP79 family. Expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in Arabidopsis resulted in the production of valine (Val)- and isoleucine-derived glucosinolates not normally found in this ecotype. The transgenic lines showed no morphological phenotype, and the level of endogenous glucosinolates was not affected. The novel glucosinolates were shown to constitute up to 35% of the total glucosinolate content in mature rosette leaves and up to 48% in old leaves. Furthermore, at increased concentrations of these glucosinolates, the proportion of Val-derived glucosinolates decreased. As the isothiocyanates produced from the Val- and isoleucine-derived glucosinolates are volatile, metabolically engineered plants producing these glucosinolates have acquired novel properties with great potential for improvement of resistance to herbivorous insects and for biofumigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。