Rotator Cuff Tear Size Regulates Fibroadipogenic Progenitor Number and Gene Expression Profile in the Supraspinatus Independent of Patient Age

肩袖撕裂大小调节冈上肌纤维脂肪生成祖细胞的数量和基因表达谱,与患者年龄无关

阅读:8
作者:Michael R Davies, Hannah Chi, Gurbani Kaur, Mengyao Liu, C Benjamin Ma, Hubert T Kim, Xuhui Liu, Brian T Feeley

Background

Fatty infiltration of rotator cuff muscle is a limiting factor in the success of repairs. Fibroadipogenic progenitors (FAPs) are a population of stem cells within the rotator cuff that can differentiate into white adipocytes, fibroblasts, and beige adipocytes. The effects of patient age and rotator cuff tendon tear size on the number, differentiation patterns, and gene expression profiles of FAPs have not yet been analyzed.

Conclusion

Patient age and rotator cuff tear size independently regulated FAP number, differentiation, and gene expression. Age and tear size were positively correlated with increased FAP number and fibrogenic/adipogenic differentiation. Advancing patient age did not limit FAP beige differentiation and gene expression, while increasing rotator cuff tear size strongly inhibited these processes.

Methods

Supraspinatus muscle samples were collected from 26 patients between the ages of 42 and 76 years with partial- or full-thickness rotator cuff tears. FAPs were quantified using fluorescence-activated cell sorting. Gene expression analysis was performed across a custom 96-gene panel using NanoString. In vitro differentiation assays of FAPs were conducted using adipogenic, fibrogenic, and beige-inducing (amibegron-treated) media, and quantitative polymerase chain reaction was used to assess gene expression differences between adipogenic and amibegron media conditions. Multivariable linear regressions were performed using Stata to independently analyze the effects of age and rotator cuff tear size on FAP number, differentiation, and gene expression.

Purpose

To determine if patient age and rotator cuff tear size independently regulate FAP number, differentiation patterns, and gene expression profiles. Study design: Controlled laboratory study.

Results

Increasing age and tear size were independently correlated with increased FAP number (βage = 0.21, P = .03; βtear size = 3.86, P = .05). There was no clear association between age and gene expression of freshly sorted FAPs. Under adipogenic and fibrogenic media conditions, increasing age and tear size were independently associated with increased adipogenic and fibrogenic differentiation of FAPs. Under amibegron treatment conditions, age positively correlated with increased beige differentiation (β = 1.03; P < .0001), while increasing tear size showed a trend toward decreased beige differentiation (β = -4.87; P = .1). When gene expression patterns between adipogenic and amibegron media conditions were compared, larger tear size strongly inhibited beige gene expression, while advanced age did not.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。