Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry

使用热解碳微阵列和快速扫描循环伏安法同时解耦检测多巴胺和氧气

阅读:4
作者:Matthew K Zachek, Pavel Takmakov, Benjamin Moody, R Mark Wightman, Gregory S McCarty

Abstract

Microfabricated structures utilizing pyrolyzed photoresist have been shown to be useful for monitoring electrochemical processes. These previous studies, however, were limited to constant-potential measurements and slow-scan voltammetry. The work described in this paper utilizes microfabrication processes to produce devices that enable multiple fast-scan cyclic voltammetry (FSCV) waveforms to be applied to different electrodes on a single substrate. This enabled the simultaneous, decoupled detection of dopamine and oxygen. In this paper we describe the fabrication process of these arrays and show that pyrolyzed photoresist electrodes possess surface chemistry and electrochemical properties comparable to PAN-type, T-650, carbon fiber microelectrodes using background-subtracted FSCV. The functionality of the array is discussed in terms of the degree of cross talk in response to flow injections of physiologically relevant concentrations of dopamine and oxygen. Finally, other applications of pyrolyzed photoresist microelectrode arrays are shown, including spatially resolved detection of analytes and combining FSCV with amperometry for the detection of dopamine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。