Decreased biofilm formation in Proteus mirabilis after short-term exposure to a simulated microgravity environment

短期暴露于模拟微重力环境后奇异变形杆菌的生物膜形成减少

阅读:6
作者:Dapeng Wang #, Po Bai #, Bin Zhang #, Xiaolei Su, Xuege Jiang, Tingzheng Fang, Junfeng Wang, Changting Liu

Background

Microbes threaten human health in space exploration. Studies have shown that Proteus mirabilis has been found in human space habitats. In addition, the biological characteristics of P. mirabilis in space have been studied unconditionally. The simulated microgravity environment provides a platform for understanding the changes in the biological characteristics of P. mirabilis.

Conclusion

The simulated microgravity condition enables us to explore the potential relationship between bacterial phenotype and molecular biology, thus opening up a suitable and constructive method for medical fields that have not been explored before. It provides a certain strategy for the treatment of P. mirabilis infectious diseases in space environment by exploring the microgravity of P. mirabilis.

Methods

The strange deformable rods were cultured continuously for 14 days under microgravity simulated in high-aspect rotating vessels (HARVs). The morphology, growth rate, metabolism, and biofilm formation of the strain were measured, and the phenotypic changes of P. mirabilis were evaluated. Transcriptome sequencing was used to detect differentially expressed genes under simulated microgravity and compared with phenotype.

Objective

This study intends to explore the effect of simulated microgravity on P. mirabilis, the formation of P. mirabilis biofilm, and its related mechanism.

Results

The growth rate, metabolic ability, and biofilm forming ability of P. mirabilis were lower than those of normal gravity culture under the condition of simulated microgravity. Further analysis showed that the decrease of growth rate, metabolic ability, and biofilm forming ability may be caused by the downregulation of related genes (pstS, sodB, and fumC).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。