Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats

大鼠窒息心脏骤停后糖萼降解导致血脑屏障功能障碍和脑水肿

阅读:7
作者:Jiajia Zhu, Xing Li, Jia Yin, Yafang Hu, Yong Gu, Suyue Pan

Abstract

The role of glycocalyx in blood-brain barrier (BBB) integrity and brain damage is poorly understood. Our study aimed to investigate the impacts of endothelial glycocalyx on BBB function in a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Male Sprague-Dawley rats subjected to 8-min asphyxia CA/CPR. Compared to controls, glycocalyx was mildly injured by CA, severely disrupted by hyaluronidase (HAase) with CA, and mitigated by hydrocortisone (HC) with CA. More importantly, the disruption of glycocalyx caused by HAase treatment was associated with higher BBB permeability and aggravated brain edema at 24 h after return of spontaneous circulation, as well as lower survival rate and poorer neurologic outcome at seventh day. Reversely, less degradation of glycocalyx by HC treatment was accompanied by higher seven-day survival rate and better neurologic outcome. Mechanistically, HAase treatment further increased CA/CPR-induced activation of glia cells and expression of inflammatory factors, whereas HC decreased them in the brain cortex and hippocampus. Glycocalyx degradation results in BBB leakage, brain edema, and deteriorates neurologic outcome after asphyxia CA/CPR in rats. Preservation of glycocalyx by HC could improve neurologic outcome and reduce BBB permeability, apparently through reduced gene transcription-protein synthesis and inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。