Phytophthora sojae Effector PsAvh113 Targets Transcription Factors in Nicotiana benthamiana

大豆疫霉菌效应物 PsAvh113 靶向本氏烟中的转录因子

阅读:10
作者:Shuai Wu, Jinxia Shi, Qi Zheng, Yuqin Ma, Wenjun Zhou, Chengjie Mao, Chengjie Chen, Zhengwu Fang, Rui Xia, Yongli Qiao

Abstract

Phytophthora sojae is a type of pathogenic oomycete that causes Phytophthora root stem rot (PRSR), which can seriously affect the soybean yield and quality. To subvert immunity, P. sojae secretes a large quantity of effectors. However, the molecular mechanisms regulated by most P. sojae effectors, and their host targets remain unexplored. Previous studies have shown that the expression of PsAvh113, an effector secreted by Phytophthora sojae, enhances viral RNA accumulations and symptoms in Nicotiana benthamiana via VIVE assay. In this study, we analyzed RNA-sequencing data based on disease symptoms in N. benthamiana leaves that were either mocked or infiltrated with PVX carrying the empty vector (EV) and PsAvh113. We identified 1769 differentially expressed genes (DEGs) dependent on PsAvh113. Using stricter criteria screening and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis of DEGs, we found that 38 genes were closely enriched in response to PsAvh113 expression. We selected three genes of N. benthamiana (NbNAC86, NbMyb4, and NbERF114) and found their transcriptional levels significantly upregulated in N. benthamiana infected with PVX carrying PsAvh113. Furthermore, individual silencing of these three genes promoted P. capsici infection, while their overexpression increased resistance to P. capsici in N. benthamiana. Our results show that PsAvh113 interacts with transcription factors NbMyb4 and NbERF114 in vivo. Collectively, these data may help us understand the pathogenic mechanism of effectors and manage PRSR in soybeans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。