The Effect of Parent Cell Type on Small Extracellular Vesicle-Derived Vehicle Functionality

母细胞类型对小细胞外囊泡衍生载体功能的影响

阅读:11
作者:Sruti Bheri, Hyun-Ji Park, Jessica R Hoffman, Felipe Takaesu, Michael E Davis

Abstract

Cell therapies involving c-kit+ progenitor cells (CPCs) and mesenchymal stem cells (MSCs) have been actively studied for cardiac repair. The benefits of such therapies have more recently been attributed to the release of small extracellular vesicles (sEVs) from the parent cells. These sEVs are 30-180 nm vesicles containing protein/nucleic acid cargo encapsulated within an amphiphilic bilayer membrane. Despite their pro-reparative effects, sEV composition and cargo loading is highly variable, making it challenging to develop robust therapies with sEVs. Synthetic alternatives have been developed to allow cargo modulation, including prior work from the laboratory, to design sEV-like vehicles (ELVs). ELVs are synthesized from the sEV membrane but allow controlled cargo loading. It is previously shown that loading pro-angiogenic miR-126 into CPC-derived ELVs significantly increases endothelial cell angiogenesis compared to CPC-sEVs alone. Here, they expand on this work to design MSC-derived ELVs and study the role of the parent cell type on ELV composition and function. It is found that ELV origin does affect the ELV potency and that ELV membrane composition can affect outcomes. This study showcases the versatility of ELVs to be synthesized from different parent cells and highlights the importance of selecting ELV source cells based on the desired functional outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。