Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance

水稻 CIRCADIAN CLOCK ASSOCIATED 1 转录调控 ABA 信号传导以赋予多种非生物胁迫耐受性

阅读:3
作者:Hua Wei, Hang Xu, Chen Su, Xiling Wang, Lei Wang

Abstract

The circadian clock facilitates the survival and reproduction of crop plants under harsh environmental conditions such as drought and osmotic and salinity stresses, mainly by reprogramming the endogenous transcriptional landscape. Nevertheless, the genome-wide roles of core clock components in rice (Oryza sativa L.) abiotic stress tolerance are largely uncharacterized. Here, we report that CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1), a vital clock component in rice, is required for tolerance to salinity, osmotic, and drought stresses. DNA affinity purification sequencing coupled with transcriptome analysis identified 692 direct transcriptional target genes of OsCCA1. Among them, the genes involved in abscisic acid (ABA) signaling, including group A protein phosphatase 2C genes and basic region and leucine zipper 46 (OsbZIP46), were substantially enriched. Moreover, OsCCA1 could directly bind the promoters of OsPP108 and OsbZIP46 to activate their expression. Consistently, oscca1 null mutants generated via genome editing displayed enhanced sensitivities to ABA signaling. Together, our findings illustrate that OsCCA1 confers multiple abiotic stress tolerance likely by orchestrating ABA signaling, which links the circadian clock with ABA signaling in rice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。