DoubleSG-DTA: Deep Learning for Drug Discovery: Case Study on the Non-Small Cell Lung Cancer with EGFRT 790 M Mutation

DoubleSG-DTA:深度学习药物研发:以 EGFRT 790 M 突变的非小细胞肺癌为例

阅读:6
作者:Yongtao Qian, Wanxing Ni, Xingxing Xianyu, Liang Tao, Qin Wang

Abstract

Drug-targeted therapies are promising approaches to treating tumors, and research on receptor-ligand interactions for discovering high-affinity targeted drugs has been accelerating drug development. This study presents a mechanism-driven deep learning-based computational model to learn double drug sequences, protein sequences, and drug graphs to project drug-target affinities (DTAs), which was termed the DoubleSG-DTA. We deployed lightweight graph isomorphism networks to aggregate drug graph representations and discriminate between molecular structures, and stacked multilayer squeeze-and-excitation networks to selectively enhance spatial features of drug and protein sequences. What is more, cross-multi-head attentions were constructed to further model the non-covalent molecular docking behavior. The multiple cross-validation experimental evaluations on various datasets indicated that DoubleSG-DTA consistently outperformed all previously reported works. To showcase the value of DoubleSG-DTA, we applied it to generate promising hit compounds of Non-Small Cell Lung Cancer harboring EGFRT790M mutation from natural products, which were consistent with reported laboratory studies. Afterward, we further investigated the interpretability of the graph-based "black box" model and highlighted the active structures that contributed the most. DoubleSG-DTA thus provides a powerful and interpretable framework that extrapolates for potential chemicals to modulate the systemic response to disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。