Xanthohumol Pyrazole Derivative Improves Diet-Induced Obesity and Induces Energy Expenditure in High-Fat Diet-Fed Mice

黄腐酚吡唑衍生物可改善饮食引起的肥胖并诱导高脂饮食小鼠的能量消耗

阅读:9
作者:Ines L Paraiso, Luce M Mattio, Armando Alcázar Magaña, Jaewoo Choi, Layhna S Plagmann, Margaret A Redick, Cristobal L Miranda, Claudia S Maier, Sabrina Dallavalle, Chrissa Kioussi, Paul R Blakemore, Jan F Stevens

Abstract

The energy intake exceeding energy expenditure (EE) results in a positive energy balance, leading to storage of excess energy and weight gain. Here, we investigate the potential of a newly synthesized compound as an inducer of EE for the management of diet-induced obesity and insulin resistance. Xanthohumol (XN), a prenylated flavonoid from hops, was used as a precursor for the synthesis of a pyrazole derivative tested for its properties on high-fat diet (HFD)-induced metabolic impairments. In a comparative study with XN, we report that 4-(5-(4-hydroxyphenyl)-1-methyl-1H-pyrazol-3-yl)-5-methoxy-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (XP) uncouples oxidative phosphorylation in C2C12 cells. In HFD-fed mice, XP improved glucose tolerance and decreased weight gain by increasing EE and locomotor activity. Using an untargeted metabolomics approach, we assessed the effects of treatment on metabolites and their corresponding biochemical pathways. We found that XP and XN reduced purine metabolites and other energy metabolites in the plasma of HFD-fed mice. The induction of locomotor activity was associated with an increase in inosine monophosphate in the cortex of XP-treated mice. Together, these results suggest that XP, better than XN, affects mitochondrial respiration and cellular energy metabolism to prevent obesity in HFD-fed mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。