A structure-guided mutational analysis of simian virus 40 large T antigen: identification of surface residues required for viral replication and transformation

猿猴病毒 40 大 T 抗原的结构引导突变分析:鉴定病毒复制和转化所需的表面残基

阅读:6
作者:Deepika Ahuja, Abhilasha V Rathi, Amy E Greer, Xiaojiang S Chen, James M Pipas

Abstract

Simian virus 40 large T antigen (TAg) transforms cells in culture and induces tumors in rodents. Genetic studies suggest that TAg interaction with the chaperone hsp70 and tumor suppressors pRb and p53 may not be sufficient to elicit complete transformation of cells. In order to identify additional cellular factors important for transformation, we designed mutations on the solvent-exposed surface of TAg. We hypothesized that surface residues would interact directly with cellular targets and that the mutation of these residues might disrupt this interaction without perturbing TAg's global structure. Using structural data, we identified 61 amino acids on the surface of TAg. Each surface amino acid was changed to an alanine. Furthermore, five patches containing clusters of charged amino acids on the surface of TAg were identified. Within these patches, we selectively mutated three to four charged amino acids and thus generated five mutants (patch mutants 1 to 5). We observed that while patch mutants 3 and 4 induced foci in REF52 cells, patch mutants 1 and 2 were deficient in focus formation. We determined that the patch 1 mutant is defective in p53 binding, thus explaining its defect in transformation. The patch 2 mutant can interact with the Rb family members and p53 like wild-type TAg but is unable to transform cells, suggesting that it is defective for action on an unknown cellular target essential for transformation. Our results suggest that the histone acetyltransferase CBP/p300 is one of the potential targets affected by the mutations in patch 2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。