Functionally divergent alleles and duplicated Loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum trichomes

功能不同的等位基因和编码酰基转移酶的重复位点导致茄属植物毛状体中酰基糖代谢物的多样性

阅读:6
作者:Anthony L Schilmiller, Gaurav D Moghe, Pengxiang Fan, Banibrata Ghosh, Jing Ning, A Daniel Jones, Robert L Last

Abstract

Glandular trichomes from tomato (Solanum lycopersicum) and other species in the Solanaceae produce and secrete a mixture of O-acylsugars (aliphatic esters of sucrose and glucose) that contribute to insect defense. Despite their phylogenetic distribution and diversity, relatively little is known about how these specialized metabolites are synthesized. Mass spectrometric profiling of acylsugars in the S. lycopersicum x Solanum pennellii introgression lines identified a chromosome 11 locus containing a cluster of BAHD acyltransferases with one gene (named Sl-ASAT3) expressed in tip cells of type I trichomes where acylsugars are made. Sl-ASAT3 was shown to encode an acyl-CoA-dependent acyltransferase that catalyzes the transfer of short (four to five carbons) branched acyl chains to the furanose ring of di-acylsucrose acceptors to produce tri-acylsucroses, which can be further acetylated by Sl-ASAT4 (previously Sl-AT2). Among the wild tomatoes, diversity in furanose ring acyl chains on acylsucroses was most striking in Solanum habrochaites. S. habrochaites accessions from Ecuador and northern Peru produced acylsucroses with short (≤C5) or no acyl chains on the furanose ring. Accessions from central and southern Peru had the ability to add short or long (up to C12) acyl chains to the furanose ring. Multiple ASAT3-like sequences were found in most accessions, and their in vitro activities correlated with observed geographical diversity in acylsugar profiles.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。