Circadian disruption decreases gluconeogenic flux in late-gestation, nonlactating dairy cows

昼夜节律紊乱导致妊娠晚期非哺乳奶牛的糖异生通量减少

阅读:5
作者:Linda M Beckett, Shawn S Donkin, Theresa Casey

Abstract

Cattle exposed to shifts in light-dark phases during late pregnancy develop hypoglycemia and insulin resistance. Our objective was to investigate if differences in liver carbon flux for gluconeogenesis were driving circadian-disrupted metabolic alterations in glucose homeostasis, and relate changes in carbon flux to hepatic gene expression. We hypothesized circadian disruption would decrease hepatic carbon flux for glucose synthesis. Milking was ceased in late-gestation Holstein cows (n = 8) at 60 d before expected calving (BEC), and animals were assigned to either a control (n = 4) or a phase-shifted (PS; n = 4) group. From d 35 to 21 BEC both groups of cows were exposed to 16 h of light and 8 h of dark, but for the PS, light was shifted forward 6 h every 3 d. On d 21 BEC, liver biopsies were collected, subdivided, and incubated in 1.0 mM [U-13C] propionate for 2 h. Total RNA was isolated from a separate liver sample and used for RNA-sequencing analysis. Postincubation 13C mass isotopologue distribution was determined for aspartate, serine, alanine, and glutamate and used to calculate metabolic flux ratios. Enrichment of serine to enrichment of aspartate ratio (eSer:eAsp) was lower for PS (0.75 ± 0.02) cows compared with control (0.81 ± 0.04), indicating a reduction in carbon flux toward glucose for PS animals. eSer:eAsp ratio was negatively correlated to propionyl-CoA carboxylase (PCCB; r = -0.79) and succinate dehydrogenase subunit D (SDHD; r = -0.82). These relationships indicate that when dairy cattle are exposed to circadian disruption during late gestation, propionate carbon is preferentially used for energy rather than gluconeogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。