Genome-wide analysis of long noncoding RNAs and their association in regulating the metamorphosis of the Sarcophaga peregrina (Diptera: Sarcophagidae)

长链非编码RNA的全基因组分析及其在调控游食麻蝇变态中的作用(双翅目:麻蝇科)

阅读:5
作者:Yanjie Shang, Yakai Feng, Lipin Ren, Xiangyan Zhang, Fengqin Yang, Changquan Zhang, Yadong Guo

Background

The flesh fly, Sarcophaga peregrina (Diptera: Sarcophagidae), is an important hygiene pest, that causes myiasis in humans and other mammals, typically livestock, and as a vector for various parasitic agents, including bacteria, viruses, and parasites. The role of long non-coding RNAs (lncRNAs) in regulating gene expression during metamorphosis of the flesh fly has not been well established. Methodology/principal findings: In this study, we performed genome-wide identification and characterization of lncRNAs from the early pupal stage (1-days pupae), mid-term pupal stage (5-days pupae), and late pupal stage (9-days pupae) of S. peregrina by RNA-seq, and a total of 6921 lncRNAs transcripts were identified. RT-qPCR and enrichment analyses revealed the differentially expressed lncRNAs (DE lncRNAs) that might be associated with insect metamorphosis development. Furthermore, functional analysis revealed that the DE lncRNA (SP_lnc5000) could potentially be involved in regulating the metamorphosis of S. peregrina. RNA interference of SP_lnc5000 caused reduced expression of metamorphosis-related genes in 20-hydroxyecdysone (20E) signaling (Br-c, Ftz-F1), cuticle tanning pathway (TH, DOPA), and chitin related pathway (Cht5). Injection of dsSP_lnc5000 in 3rd instar larvae of S. peregrina resulted in deformed pupae, stagnation of pupal-adult metamorphosis, and a decrease in development time of pupal, pupariation rates and eclosion rates. Hematoxylin-eosin staining (H&E), scanning electron microscope (SEM) observation and cuticle hydrocarbons (CHCs) analysis indicated that SP_lnc5000 had crucial roles in the metamorphosis developmental by modulating pupal cuticular development. Conclusions/significance: We established that the lncRNA SP_lnc5000 potentially regulates the metamorphosis of S. peregrina by putatively affecting the structure and composition of the pupal cuticle. This study enhances our understanding of lncRNAs as regulators of metamorphosis in S. peregrina, and provide valuable insights into the identification of potential targets for vector control and the development of effective strategies for controlling the spread of myiasis and parasitic diseases.

Significance

We established that the lncRNA SP_lnc5000 potentially regulates the metamorphosis of S. peregrina by putatively affecting the structure and composition of the pupal cuticle. This study enhances our understanding of lncRNAs as regulators of metamorphosis in S. peregrina, and provide valuable insights into the identification of potential targets for vector control and the development of effective strategies for controlling the spread of myiasis and parasitic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。